Introduction to Solid State Science

Toshio Kamiya

Jan 17	-	1	Understand fundamental physics of dielectrics and ferroelectrics
Jan 20		1 5	Understand calculations of dielectric and ferroelectric properties

Internal macroscopic field is different from external field: Depolarization field

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 457

Figure 4 The depolarization field E_1 is opposite to P. The fictitious surface charges are indicated: the field of these charges is E_1 within the ellipsoid.

External field E_0 : formed by the charges on the electrodes Q_e Surface charges: induced from internal polarization $\pm Q_P = n_{surface} \cdot P = \pm |P| = \pm \chi |E_0|$, which forms extra electric field: $E_1 = -\frac{|P|}{\varepsilon_0}$ Internal macroscopic field *E* in the dielectrics: $E = E_0 + E_1 = E_0 - \frac{P}{\varepsilon_0}$

General shapes of dielectrics: $E_{1,s} = -\frac{N_s}{\varepsilon_0}P_s$, N_s : Depolarization factors $(s_N = x, y, z)$

Shape	Axis	(CGS)	(SI)
Sphere	any	$4\pi/3$	1/3
Thin slab	normal	4π	1
Thin slab	in plane	0	0
Long circular cylinder	longitudinal	0	0
Long circular cylinder	transverse	2π	1/2

Internal macroscopic field is different from external field: Depolarization field

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 457

 χ is defined by internal electric field E $E = E_0 + E_1 = E_0 - \frac{N}{\varepsilon_0}P$: $P = \varepsilon_0 \chi E = \varepsilon_0 \chi \left(E_0 - \frac{N}{\varepsilon_0}P\right)$ $\implies P = \frac{\varepsilon_0 \chi}{1 + N \chi} E_0$ **Macroscopic theory => Microscopic theory**

Understand properties of dielectric from those of atoms/ions

Polarizability of the atom *i* (α_i) is defined by atomic polarization p_i and local electric field E_{local} $p_i = \alpha_i E_{\text{local}}(r_i)$

How is *E*_{local} different from the macroscopic internal field *E* ?

Internal electric field at an atomic site: Lorentz field

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 460

At an atom site r_0 , polarizations from surrounding atoms form an extra field: Lorentz field **R2**: Contribution to E_{local} at r_0 , the center of the sphere, is calculated by summing up the ion charges in R2. => the net charges appear on the surface of the sphere $E_2 = \frac{1}{3\varepsilon_0}P$: Lorentz field For cubic symmetry $E_{\text{local}} = E + \frac{1}{3\varepsilon_0}P$

Atom polarizability to dielectric permitivity

Polarizability of the atom *i* (α_i) is defined by atomic polarization p_i and E_{local}

$$p_i = \alpha_i E_{\text{local}}(r_i)$$
$$E_{\text{local}} = E + \frac{1}{3\varepsilon_0}P$$

Assume the atomic polarization is independent from each other.

$$P = \sum_{i} N_{i} \alpha_{i} E_{\text{local}}(r_{i}) = \sum_{i} N_{i} \alpha_{i} \left(E + \frac{1}{3\varepsilon_{0}}P\right)$$

$$\varepsilon_{0} \chi = \frac{P}{E} = \frac{\sum_{i} N_{i} \alpha_{i}}{1 - \frac{1}{3\varepsilon_{0}} \sum_{i} N_{i} \alpha_{i}}$$

Using $\varepsilon_{r} = 1 + \chi$

$$\frac{\varepsilon_{r} - 1}{\varepsilon_{r} + 2} = \frac{1}{3\varepsilon_{0}} \sum_{i} N_{i} \alpha_{i}$$
 Clausius-Mossotti relation

Simple model of electronic polarizability

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 464

			He	Li ⁺	Be ²⁺	B ³⁺	C ⁴⁺
Pauling JS			0.201	0.029 0.029	0.008	0.003	0.0013
Pauling JS-(TKS)	O^{2-} 3.88 (2.4)	F ⁻ 1.04 0.858	Ne 0.390	Na ⁺ 0.179 0.290	Mg ²⁺ 0.094	Al ³⁺ 0.052	Si ⁴⁺ 0.0165
Pauling [S-(TKS)	${S^{2-}}\ 10.2\ (5.5)$	${ m Cl}^-$ 3.66 2.947	Ar 1.62	K ⁺ 0.83 1.133	${ m Ca}^{2+}\ 0.47\ (1.1)$	Se ³⁺ 0.286	${ m Ti}^{4+}\ 0.185\ (0.19)$
Pauling JS-(TKS)	${ m Se}^{2-}$ 10.5 (7.)	Br ⁻ 4.77 4.091	Kr 2.46	${ m Rb^+}\ 1.40\ 1.679$	${ m Sr}^{2+}$ 0.86 (1.6)	Y ³⁺ 0.55	Zr^{4+} 0.37
Pauling JS-(TKS)	${ m Te}^{2-}$ 14.0 (9.)	I ⁻ 7.10 6.116	Xe 3.99	Cs ⁺ 2.42 2.743	${ m Ba}^{2+}\ 1.55\ (2.5)$	La^{3+} 1.04	Ce^{4+} 0.73

Table 1 Electronic polarizabilities of atoms and ions, in 10⁻²⁴ cm³

Values from L. Pauling, Proc. R. Soc. London A114, 181 (1927); S. S. Jaswal and T. P. Sharma, J. Phys. Chem. Solids 34, 509 (1973); and J. Tessman, A. Kahn, and W. Shockley, Phys. Rev. 92, 890 (1953). The TKS polarizabilities are at the frequency of the D lines of sodium. The values are in CGS; to convert to SI, multiply by 9×10^{-15} .

Electronic polarizability

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 464

Total polarizability may be separated into (i) electronic, (ii) ionic, and (iii) dipolar / interfacial parts.

Figure 8 Frequency dependence of the several contributions to the polarizability.

Frequency dependence: Lorentz model

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 466

Shell model: Electron bound by spring constant *k*

Classical mechanics approximation

$$-eE_{\text{local}} = kx = m\omega_0^2 x$$

Electronic polarizability

$$\alpha = \frac{p}{E_{\text{local}}} = -ex/E_{\text{local}} = e^2/m\omega_0^2$$

Frequency dependence: $E_{\text{local}} = E_0 e^{i\omega t}$

$$\alpha = \frac{e^2/m}{\omega_0^2 - \omega^2}$$

Similar expression is obtained by quantum theory

$$\alpha = \frac{e^2}{m} \sum_{i,j} \frac{f_{ij}}{\omega_{ij}^2 - \omega^2}$$

 ω_{ij} : Transition energy from *I* to *j* states f_{ij} : Oscillator strength

Generalized to ion displacement polarization

 $-\frac{E_{\text{local}}}{e_{\text{lectron}}}$ nuclei $-\frac{x}{e_{\text{local}}}$ electron $k = m\omega_0^2$

Lorentz model and Drude model

Lorentz model is derived from $-eE_{local} = kx = m\omega_0^2 x$: **The recovery force** kx results in the resonant-type relaxation with the relaxation frequency ω_0 .

 $\alpha = \frac{e^2/m}{\omega_0^2 - \omega^2}$: Applied to electronic polarization in atom, ionic polarization (phonon)

For the case of no recovery term, but charge distribution also forms recovery force => Non-resonant-type relaxation: Drude model

$$\varepsilon_{1,Drude}(\omega) = 1 - \frac{\omega_p^2 \tau^2}{1 + \omega^2 \tau^2} \qquad \varepsilon_{2,Drude}(\omega) = \frac{\omega_p^2 \tau}{\omega(1 + \omega^2 \tau^2)}$$

 $\omega_p = \sqrt{\frac{\varepsilon_{-1} v_{free}}{\varepsilon_{\infty} \varepsilon_0 m_e^*}}$ Plasma frequency

Applied to free carrier polarization, dipolar interfacial polarization

Lyddane–Sachs–Teller relation

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 414 中村輝太郎 編著、強誘電体構造相転移(裳華房, 1988)

Lyddane–Sachs–Teller (LST) relation

$$\frac{\varepsilon}{\varepsilon_{\infty}} = \frac{\omega_{L0}^2}{\omega_{T0}^2}$$

Lyddane–Sachs–Teller–Kurosawa (LSTK) relation

$$\frac{\varepsilon(\omega)}{\varepsilon_{\infty}(\omega)} = \prod \frac{\omega_{L0,i}^{2} - \omega^{2}}{\omega_{T0,i}^{2} - \omega^{2}}$$

- ω_{TO} : Resonance frequency of transversal phonon Polarization formed by phonon is macroscopically zero.
- At $\omega_{LO,i}$: $\varepsilon(\omega) = 0$ At $\omega_{TO,i}$: $\varepsilon_{\infty}(\omega) = 0$
- ω_{L0} : Resonance frequency of longitudinal phonon Polarization formed by phonon gives recovery force to phonon: Higher than ω_{T0}

Possible to estimate ε **from infrared / Raman spectrum**

	NaI	KBr	GaAs
ω_L/ω_T	1.44 ± 0.05	1.39 ± 0.02	1.07 ± 0.02
$[\epsilon(0)/\epsilon(\infty)]^{1/2}$	1.45 ± 0.03	1.38 ± 0.03	1.08

Dielectric constant and Born effective charge

上江洲由晃 緒、強誘電体 (内田老鶴圃)

Polarization change ΔP is related to ion displacement Δu_i .

- One may use formal ion charges or calculated ion charges to calculate the dielectric constant.
- This may work satisfactory for low ε materials. •
- For high ε materials, the ε value calculated from those ion charges • would very often underestimated

Ion charges inversely calculated from dielectric tensor and ion displacements

$$\Delta \boldsymbol{P} = \frac{e}{v} \sum Z^*_{i} \Delta u_i$$

 Z^*_i : Born effective charge (tensor in general case $Z^*_{i,ss'} = \frac{V}{e} \frac{\partial P}{\partial \Delta u_{i,ss'}}$)

- Agree well with usual ion charge for low ε materials
- **Extraordinary large for high \varepsilon materials**

<= Redistribution of electron and its polarization are not negligible for some materials

Dielectric constant and Born effective charge

上江洲由晃 緒、強誘電体 (内田老鶴圃)

ABO ₃	$\mathbf{Z}^{*}_{\mathbf{A}}$	Z_{B}^{*}	Z* ₀₍₁₎	Z* ₀₍₂₎
Formal charge	+2	+4	-2	-2
CaTiO ₃	2.58	7.08	-5.65	-2
SrTiO ₃	2.56 2.54 2.55	7.26 7.12 7.56	-5.73 -5.66 -5.92	-2.15 -2.00 -2.12
BaTiO ₃	2.77 2.75 2.61	7.25 7.16 5.88	-5.71 -5.69 -4.43	-2.15 -2.11 -2.03
BaZrO ₃	2.73	6.03	-4.74	-2.01
PbTiO ₃	3.90	7.06	-5.83	-2.56
PbZrO ₃	3.92	5.85	-4.81	-2.48

For perovskite crystals, the B and O(1) have large Born effective charges: **Effect of electron transfer between B and O(1)**

Why perovskite-type crystals exhibit high ε?

Structural instability
by the sub-lattice structure0Case 1:
Unit cell is stabilized by B-O
A ion is loosely embedded0.7Case 2:
Unit cell is stabilized by A-O
B ion is loosely embedded

For ideal cubic perovskite structure:

Each ion makes just contact with neighbor ions if their ion radii satisfy

$$a = \sqrt{2} \left(r_A + r_O \right) = 2 \left(r_B + r_O \right)$$

 $t = \frac{r_A + r_O}{\sqrt{2}(r_B + r_O)} = 1.0$ Tolerance factor

For *t* apart from 1.0, the cubic structure would be distorted:

t	Lattice	Explanation	Example
>1	Hexagonal	Large $r_{\rm A}$ Small $r_{\rm B}$	BaNiO ₃
0.9-1	Cubic	Ideal contact	SrTiO ₃ , BaTiO ₃
.71 - 0.9	Orthorhombic Rhombohedral	Small r_A in B ion interstitial	GdFeO ₃ (Orth.) CaTiO ₃ (Orth.)
<0.71	Different structures	Samll $r_{\rm A}, r_{\rm B}$	FeTiO ₃ (Tri.)

Ferroelectricity and Anti-ferroelectricity

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 478

Classification of ferroelectrics related phases

Dielectrics:

Symmetry: any **Spontaneous polarization: not necessary Piezoelectircs:** Part of dielectirics, Stress induces surface charges (voltage) / Voltage induces strain Symmetry: non-centrosymmetric **Spontaneous polarization: not necessary (e.g., Wurtzite-type GaAs)** 21 Space groups: 1, 2, m, 222, mm2, 4, -4, 422, 4mm, -42m, 3, 32, 3m, 6, -6, 622, 6mm, -62m, 23, -43m, 432 **Pyroelectircs:** Part of piezoelectrics, **Temperature change induces spontaneous polarization change** and surface charge change Symmetry: non-centrosymmetric & polar **Spontaneous polarization: necessary Dielectrics** 10 Space groups: 1, 2, m, mm2, 4, 4mm, 3, 3m, 6, 6mm piezoelectrics **Ferroelectrics:** Part of pyroelectrics, polarization is flipped by **pyroelectrics** external electric field Symmetry: non-centrosymmetric & polar **ferroelectrics Spontaneous polarization: necessary** 10 Space groups: 1, 2, m, mm2, 4, 4mm, 3, 3m, 6, 6mm

Ferroelectrics

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 467

Temperature dependences for PbTiO₃

 ε diverges and discontinuously changes at the transition temperature (Curie temperature) $T_{\rm C}$, like λ : λ transition Feature of first order phase transition

T > T_C Cubic structure No spontaneous polarization T < T_C stabilizes ions displaced and lattice distorted => Spontaneous polarization

Ti4+

Ba2+

O2-

Ferroelectrics: BaTiO₃

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 471 三井利夫 編著、強誘電体(槇書店, 1969)

Sequential phase transition of BaTiO₃

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 471 三井利夫 編著、強誘電体(槇書店, 1969)

Sequential phase transition of BaTiO₃ Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 471

三井利夫 編著、強誘電体(槇書店, 1969)

Anti-ferroelectricity

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 479

Two types of ferroelectricity

強誘電体物理入門

Displacement type ferroelectric

Small displacement of ions form P_s

(Ions are bound by recovery force to the high-symmetric position)

Perovskite type crystals BaTiO₃, Pb(Zr,Ti)O₃

Order-disorder type ferroelectric

Ions find different stable positions in high-symmetry structure, hop to another site in a long distance

NaNO₂ : NO₂ group KDP (KH₂PO₄): H⁺

Feature of ferroelectrics: D - E / P - E hysteresis loop

 P_s : Spontaneous polarization E_{cor} : Coercive electric field

Application of ferroelectrics FeRAM (Ferroelectric RAM)

- Gate dielectric in conventional FET is replaced with ferroelectrics
- Spontaneous polarization Ps retains if gate voltage VGS is off

=> Non-volatile memory

 $-P_{\rm s}$ induces positive charge at the insulatorsemiconductor interface, but n-type semi does not induce mobile carriers

=> FET is "Off" state

+ P_s induces negative charge at the insulatorsemiconductor interface, then n-type semi induces mobile carriers => FET is "On" state

Applications of piezoelectrics Scanning Probe Microscope (SPM)

- Atomic Force Microscope (AFM)
- Scanning Tunneling Microscope (STM)

piezoelectrics is used as piezoactuator

Fast response, atomic-order precision

PZT: $d_{33} = 400 \times 10^{-12} \text{ m/V}$ $\sigma_{33} = \Delta l / l = d_{33}E$ For V = 100 V, l = 1 cm, $\sigma_{33} = d_{33}E = 400 \times 10^{-8}$ $\Delta l = 400 \text{ Å}$ For V = 0.1 V $\Delta l = 0.4 \text{ Å}$

https://ja.wikipedia.org/wiki/%E8%B5%B0%E6%9F%BB%E5%9E%8B%E3%83%83%B3%E3%83%8D%E3%83%AB%E9%A1%95%E5%BE%AE%E9%8F%A1

Applications of piezoelectrics Surface Acoustic Wave (SAW) filter

- Surface acoustic wave is induced by piezoelectrics
- SAW is resonant with the piezoelectric body at the frequency f_r
 - => Transmit signals with $f \sim f_r$: Band pass filter
- f_r : up to several GHz, used e.g. in mobile phones

https://www.murata.com/jajp/group/kanazawamurata/products/device/saw

Spontaneous polarization and double-well potential

正田朋幸 訳(B.A. Strykob, A.P. Rebaniok)、強誘電体物理入門(吉岡書店, 1993)

$4\pi/3$ catastrophe:

Slater theory of ferroelectricity

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 471 中村輝太郎 編著、強誘電体と構造相転移 (裳華房、1988)

$$\varepsilon_0 \chi = \frac{\sum_i N_i \alpha_i}{1 - \frac{1}{3\varepsilon_0} \sum_i N_i \alpha_i}$$

For single-type atom system

$$\varepsilon_0 \chi = \frac{N\alpha}{1 - \frac{1}{3\varepsilon_0} N\alpha}$$

If $N\alpha$ has a temperature dependence $\frac{1}{N\alpha} = \frac{T}{C}$

 $\varepsilon_0 \chi = \frac{c}{T - C_{\frac{1}{3\varepsilon_0}}}$ Curie-Weiss law

The local field E_{local} formed by $N\alpha E_{local}$ increases $N\alpha E_{local}$, forms positive feedback

$$\Rightarrow P = \varepsilon_0 \chi$$
 is diverged if $T = C \frac{1}{3\varepsilon_0}$, *i.e.*, $\frac{1}{N\alpha} = \frac{1}{3\varepsilon_0}$

=> Spontaneous polarization P_s appears: Ferroelectric transition ' $4\pi/3$ catastrophe' (the coefficient $1/3\varepsilon_0$ is $4\pi/3$ in CGI unit)

$4\pi/3$ catastrophe: Slater theory of ferroelectricity

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 471

Landau Theory of Phase Transition

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 474

Perovskite-type ferroelectics takes cubic crystal structure in the paraelectric phase (high temperature)

=> Free energy is expanded by

 $\hat{F}(P;T,E) = -EP + g_0 + \frac{1}{2}g_2P^2 + \frac{1}{4}g_4P^4 + \frac{1}{6}g_6P^6 + \cdots, \qquad (37)$

Equilibrium polarization is obtained by

$$\frac{\partial \hat{F}}{\partial P} = 0 = -E + g_2 P + g_4 P^3 + g_6 P^5 + \cdots .$$
(38)

To explain ferroelectric transition (Curie-Weiss law), $g_2 = \gamma (T - T_0)$

Landau Theory of Phase Transition

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 476

Consider *E* = **0 for spontaneous polarization Second-order transition**

If g_4 is positive, the g_6 term has no effect and can be neglected.

$$y(T - T_0)P_s + g_4 P_s^3 = 0 \quad , \tag{40}$$

For $T \ge T_0$: $P_s = 0$ For $T \le T_0$: $P_s^2 = (\gamma/g_4)(T - T_0)$

Landau Theory of Phase Transition

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 477

First-order transition

If g_4 is negative, the g_6 term must be retained.

$$\gamma(T - T_0)P_s - |g_4|P_s^3 + g_6 P_s^5 = 0 \quad , \tag{42}$$

$$P_s = 0 \text{ or } \gamma(T - T_0) - |g_4| P_s^2 + g_6 P_s^4 = 0 .$$
(43)

