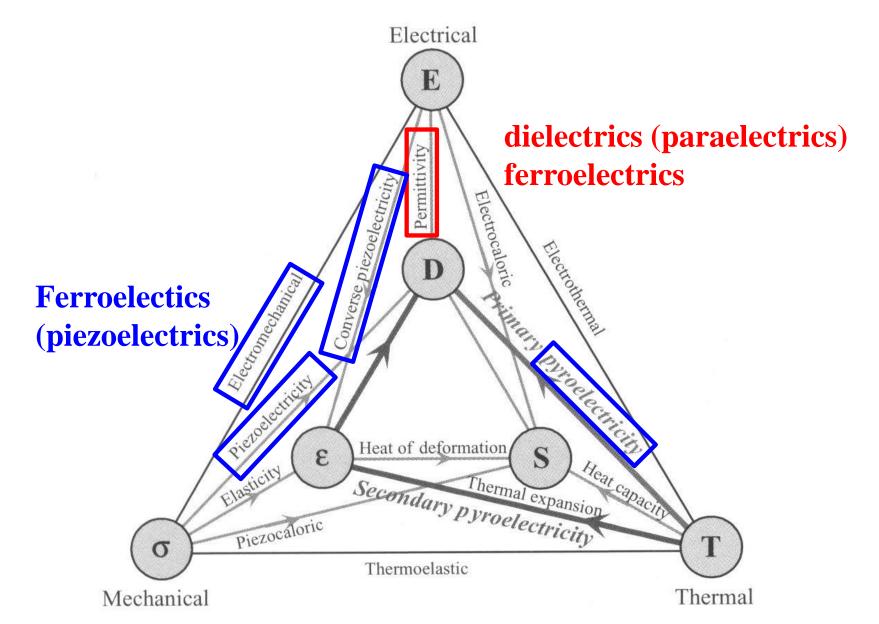
Introduction to Solid State Science

Toshio Kamiya

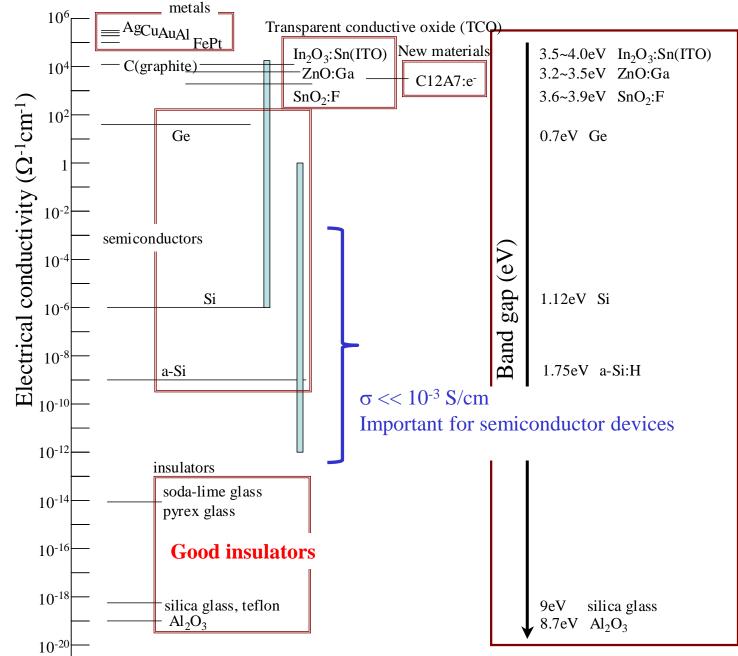
Jan 17	-	1	Understand fundamental physics of dielectrics and ferroelectrics
Jan 20	· ·	1 5	Understand calculations of dielectric and ferroelectric properties

What are material properties / functions?

Hadis Morkoc and Umit Ozgur, Zinc Oxide, Wiley-VCH



What is dielectrics?: Conductor vs insulator



What is dielectrics?

Electrical conductor (semiconductor, metal)

Characterized by electrical conductivity σ (typically > 10⁻⁸ S/cm)

 $\mathbf{j}_{\mathbf{e}}(\mathbf{r},t) = \sigma \mathbf{E}(\mathbf{r},t)$

 $\mathbf{D}_{\mathbf{a}}(\mathbf{r},t) = \varepsilon \mathbf{E}(\mathbf{r},t)$

Insulator

Characterized by very small electrical conductivity σ (typically << 10⁻⁸ S/cm)

and by dielectric constant $\boldsymbol{\epsilon}$

Dielectrics

Good dielectrics (usually)

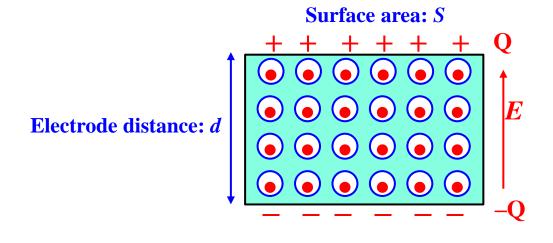
- are good electrical insulator (very small σ) to minimize dielectric loss and leakage current
- have high ε

to storage large charges at low applied voltage Classified to

paraelectics (dielectrics), ferroelectrics, anti-ferroelectrics

Function of Dielectrics

Induce / Storage electric charge Q by external electric bias V



$$D = \varepsilon E$$

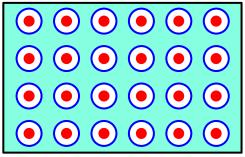
$$Q = |D|S = \varepsilon S|E| = \frac{S}{d} \varepsilon V$$

$$\varepsilon: \text{ Dielectric permittivity}$$

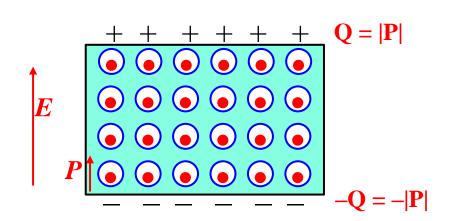
(Dielectric constant)

Dielectric permittivity

No electric polarization without external field E



Macroscopic polarization $P \neq 0$ is induced by external field Uniform P in the bulk region produces the surface charge Q = |P|



 $P = \chi_e E$ $D = \varepsilon_0 E + P = (\varepsilon_0 + \chi_e) E = \varepsilon E$ $\varepsilon = \varepsilon_0 + \chi_e$: Dielectric permittivity (Dielectric constant) χ_e : Dielectric susceptivity

Types of Dielectrics

Electron cloud *ne*-

(Ionic) polarization \ due to asymmetric local structure

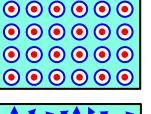
Paraelectics (dielectrics)

No electric polarization without external field *E* Spontaneous polarization

$$s = 0$$

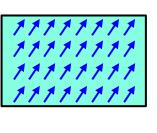
Ρ

Nuclear (ne^+)

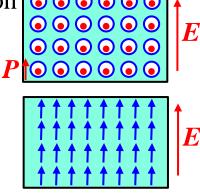


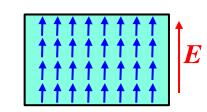
Local polarizations are aligned by by external field

FerroelectricsFinite polarizationexists without external field $P_s \neq 0$



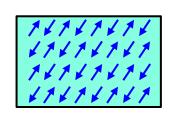
Local polarizations are aligned by external field



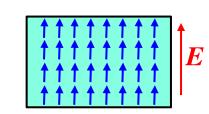


Anti-ferroelectrics

Local polarizations are ordered in anti-parallel $P_s = 0$



Local polarizations are aligned by strong external field



Electromagnetism equations

Maxwell equation

Gauss law $\operatorname{div} \boldsymbol{E}(\boldsymbol{r},t) = \frac{1}{\varepsilon_0} \rho_e(\boldsymbol{r},t)$

Ampere-Maxwell lawrot $H(r,t) = i_e(r,t) + \frac{\partial D(r,t)}{\partial t}$ Non-existence of magnetic monopole
div B(r,t) = 0Electromagnetic induction law

$$\operatorname{rot} \boldsymbol{E}(\boldsymbol{r},t) + \frac{\partial \boldsymbol{B}(\boldsymbol{r},t)}{\partial t} = 0$$

Derivatives

Electric field and electrostatic potential

Poisson equation

$$E(\mathbf{r},t) = \frac{\partial \varphi(\mathbf{r},t)}{\partial \mathbf{r}}$$
$$\nabla^2 \varphi(\mathbf{r},t) = -\frac{1}{\varepsilon_0} \rho_e(\mathbf{r},t)$$
$$\operatorname{div} \mathbf{i}_{\mathbf{e}}(\mathbf{r},t) + \frac{\partial \rho_e(\mathbf{r},t)}{\partial t} = 0$$

Charge conservation law

Electromagnetism equations

Constitutive equations (material equations)

Ohm's law (Electrical conductivity) $\mathbf{j}_{e}(\mathbf{r},t) = \sigma \mathbf{E}(\mathbf{r},t)$

Electric susceptibility

 $\mathbf{P}_{\mathbf{e}}(\mathbf{r},t) = \chi_{e}\mathbf{E}(\mathbf{r},t)$

Dielectric permittivity (**Dielectric constant**)

$$\mathbf{D}_{\mathbf{e}}(\mathbf{r},t) = \varepsilon \mathbf{E}(\mathbf{r},t)$$

Relative dielectric permittivity (constant)

Magnetic susceptibility $\mathbf{M}(\mathbf{r},t) = \chi_M \mathbf{H}(\mathbf{r},t)$ Magnetic permeability $\mathbf{B}(\mathbf{r},t) = \mu \mathbf{H}(\mathbf{r},t)$

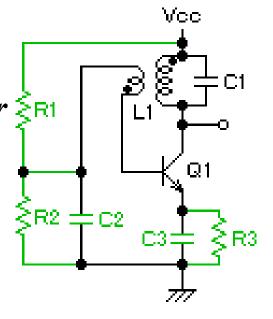
Application of dielectrics: Capacitor Capacitor: Storage charges by applied voltage V

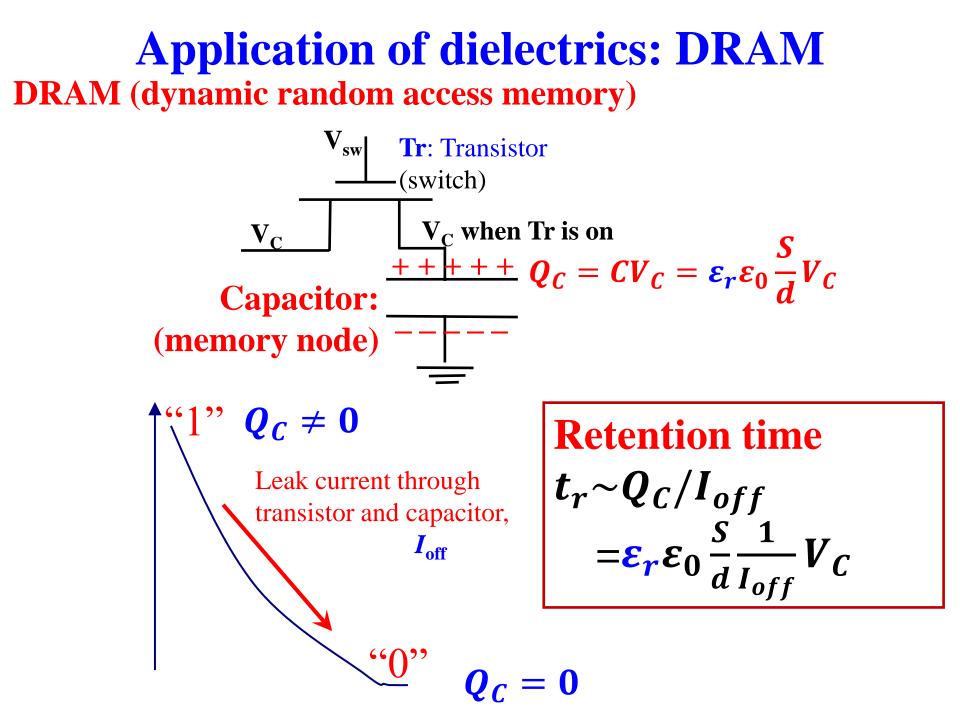
$$\frac{V_{C}}{V_{C}} + \frac{V_{C}}{V_{C}} + \frac{Q_{C}}{V_{C}} = |P| = CV_{C} = \varepsilon_{r}\varepsilon_{0}\frac{S}{d}V_{C}$$

- ε_r : Relative dielectric constant
- *S* : Electrode area of the capacitor
- d: Electrode distance

Circuits: Low (High) pass filter Oscillator *Combined with resistor, inductor*

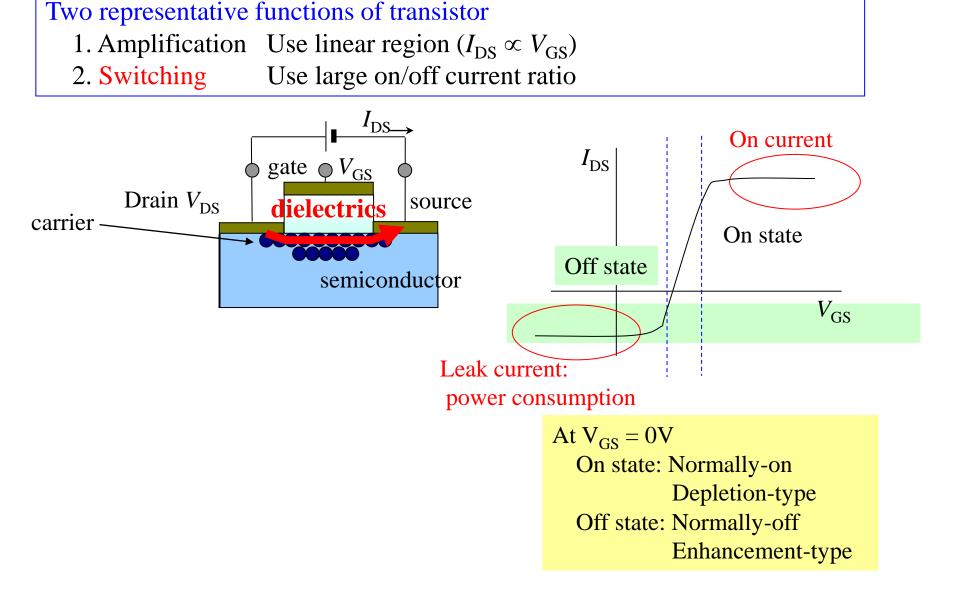
TZ





Application of dielectrics: FET

FET (Field-effect transistor)



Electric polarization

Definition of electric polarization *p*

Two point charges +q and -q are located at r_+ and r_- , respectively.

$$-q \stackrel{r_{+}}{\longrightarrow} +q$$

$$-q \stackrel{r_{-}}{\longrightarrow} \delta r = r_{+} - r_{-}$$

$$p = +qr_{+} + (-q)r_{-} = q\delta r$$

$$E \stackrel{L}{\longrightarrow} \Delta U_{p-E} = -qr_{+} \cdot E - (-q)r_{-} \cdot E$$

$$= -p \cdot E$$

General definition of electric polarization density, *P*

N point charges with q_i are located at r_i , respectively, in the volume V.

$$P = \frac{1}{V} \sum_{i=1}^{N} q_i r_i$$

Note: Uniquely defined only when the charge neutrality is satisfied.

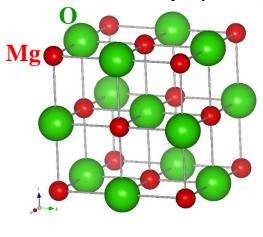
Representative dielectric crystals

ε_r of representative crystals

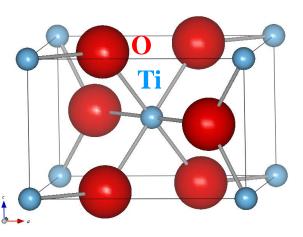
CaO	11.8	MgO	9.8	
SrO	13.3	KBr	4.78	
KCl	4.68	KF	6.05	
KI	4.94	LiI	11.03	
LiCl	11.05	NaCl	5.62	
TiO ₂ (rutile)		// <i>c</i> : 173, in <i>a-b</i> : 89		
SnO_2 (rutile)		// <i>c</i> : 9.9, in <i>a-b</i> : 14		
$Pb(Zr_0$	$_{.52}$ Ti _{0.48})O ₃ (25°C)	up to 1600		

General trend (there should be many exceptions)

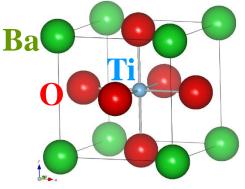
Rock-salt structure (usually $\varepsilon_r < 10$)



Rutile structure TiO₂ have large $\varepsilon_{r//c} \sim 180$



Perovskite structure Many extraordinary high $\varepsilon_r > 10^3$ (anti-)ferroelectrics, piezoelectrics



Simple model: 1D ionic crystal at 0 K

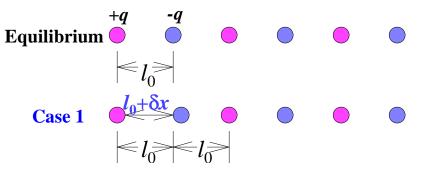
Ion polarization

Polarization formed by ion displacement induced by external electric field E.

Calculation of ion replacement

Internal energy without *E*:

$$U_{0} = \sum U_{ij}(r_{ij}) = \sum \frac{1}{2}k(x_{i} - x_{i-1} - l_{0})^{2}$$



*x*_i: Coordinate of *i*-th ion *k*: Force constant (spring constant)

If ions are displaced by E, internal energy will be:

$$U = \sum \frac{1}{2} k \{ (x_i - x_{i-1} - l_0) \}^2 - \sum q_i x_i E$$

Mechanical equilibrium condition at 0K

$$\frac{\partial U}{\partial x_j} = 0 = k \left(x_j - x_{j-1} - l_0 \right) - k \left(x_{j+1} - x_j - l_0 \right) - q_j E = 2k \delta x_j - q_j E$$
$$= \delta x_j = \frac{q_j}{2k} E$$

Simple model: 1D ionic crystal at 0 K Ion displacement $\delta x_j = \frac{q_j}{2k}E =>$ Polarization density P

$$P = \frac{\sum q_j \delta x_j}{2l_0} = \frac{q^2}{4l_0 k} E$$

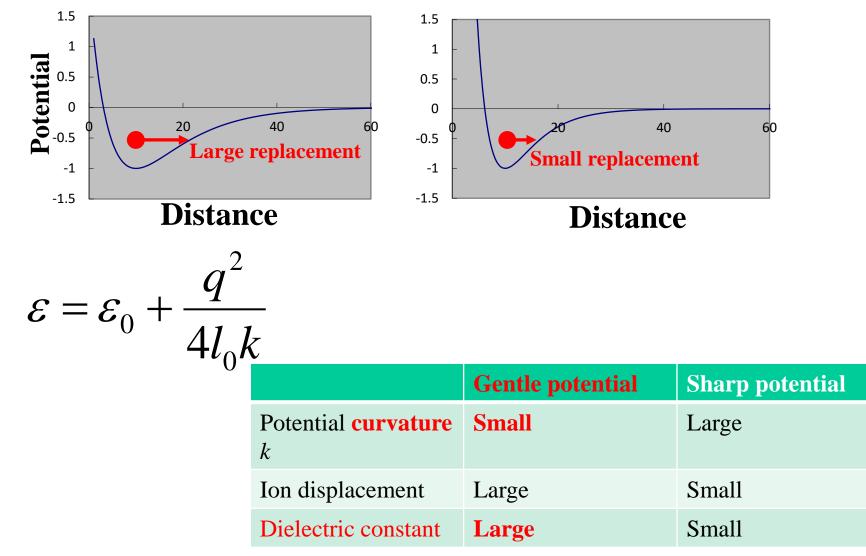
Dielectric constant

$$D = \varepsilon E = \varepsilon_0 E + P$$

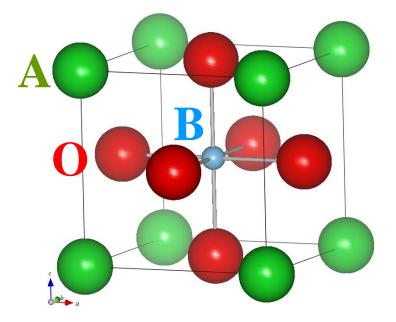
$$\varepsilon = \varepsilon_0 + \frac{q^2}{4l_0 k} \qquad \left(\varepsilon_r = 1 + \frac{q^2}{4l_0 k \varepsilon_0}\right)$$

Dielectric constant is determined by *k k*: Force constant, or Curvature of ion potential $k = \frac{1}{2} \frac{\partial^2 U}{\partial x_i^2}$

Dielectric constant vs potential curvatureGentle potentialSharp potential



Why perovskite-type crystals exhibit high ε?



Structural instability
by the sub-lattice structure
Case 1:
Unit cell is stabilized by B-O
A ion is loosely embedded
Case 2:
Unit cell is stabilized by A-O
B ion is loosely embedded

For ideal cubic perovskite structure:

Each ion makes just contact with neighbor ions if their ion radii satisfy

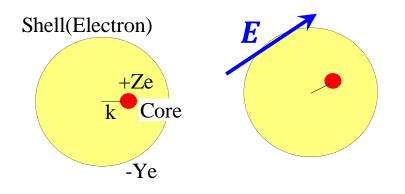
$$a = \sqrt{2} \left(r_A + r_O \right) = 2 \left(r_B + r_O \right)$$

 $t = \frac{r_A + r_O}{\sqrt{2}(r_B + r_O)} = 1.0$ Tolerance factor

For *t* apart from 1.0, the cubic structure would be distorted:

t	Lattice	Explanation	Example
>1	Hexagonal	Large $r_{\rm A}$ Small $r_{\rm B}$	BaNiO ₃
0.9-1	Cubic	Ideal contact	SrTiO ₃ , BaTiO ₃
0.71 - 0.9	Orthorhombic Rhombohedral	Small r_A in B ion interstitial	GdFeO ₃ (Orth.) CaTiO ₃ (Orth.)
<0.71	Different structures	Samll $r_{\rm A}, r_{\rm B}$	FeTiO ₃ (Tri.)

How to incorporate electronic polarization: Shell model



+Ze: Effective core charge of ion
-Ye : Charge of valence electron contribute to polarization (electron cloud)
(Z - Y)e: Ion charge

- 1. Ion is separated to 'effective core' and 'electron cloud', which are bound by spring with the force constant k.
- 2. The core and the electron cloud have their own charges, +Ze and -Ye, respectively.

=> The electron cloud can be treated as if it is a rigid ion. The previous 1D model@0 K is applied.

Electronic polarization of an ion:

 $\alpha_{ion} = \frac{Y^2}{k}$

Extension to 3D model @ 0 K, non-harmonic interionic potential

Internal energy without *E*:

$$U_0 = \frac{1}{2} \sum_{i,j} U_{ij}(\mathbf{r}_{10}, \mathbf{r}_{20}, ...) \qquad \begin{array}{c} \mathbf{r}_{i0}: & \text{Equilibrium coordinate of } \underline{i} \text{-th ion} \\ \mathbf{U}_{ij}(\mathbf{r}_k): \text{ Interionic potential between } i \text{-th and } j \text{-th ions} \end{array}$$

If ions are displaced by E, internal energy will be:

$$U_{pE} = U_0(\mathbf{r_{10}} + \delta \mathbf{r_1}, \dots) - \sum_i q_i \delta \mathbf{r_i} \cdot \mathbf{E}$$

= $U_0 + \frac{1}{2} \sum_{i,s,j,s'} \frac{\partial^2 U_0}{\partial x_{i,s} \partial x_{j,s'}} \delta x_{i,s} \delta x_{j,s'} - \sum_i q_i \delta \mathbf{r_i} \cdot \mathbf{E}$
= $U_0 + \frac{1}{2} \sum_{i,s,j,s'} W_{i,s,j,s'} \delta x_{i,s} \delta x_{j,s'} - \sum_i q_i \delta \mathbf{r_i} \cdot \mathbf{E}$

 $\delta r_i : \text{Ion displacement by } E$ $\delta x_{i,s}: s \text{ direction component } (s = x, y, z) \text{ of}$ i-th ion replacement $W_{i,s,j,s'} = \frac{\partial^2 U_0}{\partial x_{i,s} \partial x_{j,s'}}: \text{Hessian matrix (potential curvature)}$

Extension to 3D model @ 0 K, non-harmonic interionic potential

$$U_{pE} = U_0 + \frac{1}{2} \sum_{i,s,j,s'} W_{i,s,j,s'} \delta x_{i,s} \delta x_{j,s'} - \sum_i q_i \delta \mathbf{r}_i \cdot \mathbf{E}$$

Mechanical equilibrium condition at 0K

$$\frac{\partial O_{pE}}{\partial x_{i,s}} = 0 = \sum_{j,s'} W_{i,s,j,s'} \delta x_{j,s'} - q_j E_s = 0$$

Ion displacements are calculated easily by the matrix calculation:

$$\left(\delta x_{j,s'}\right) = \left(W^{-1}_{i,s,j,s'}\right)\left(q_j E_s\right)$$
 (cf. 1D case: $\delta x_j = \frac{q_j}{2k}E$)

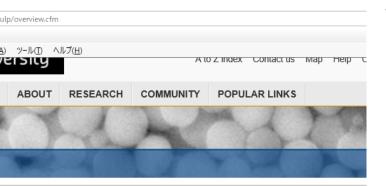
Dielectric constant tensor ε_{ss} ,

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon_0 \mathbf{E} + \frac{1}{V} \sum_j q_j \delta \mathbf{r}_j$$

= $\varepsilon_0 \mathbf{E} + \frac{1}{V} \sum_j q_j \sum_{i,s'} (W^{-1}_{i,s',j,s}) (q_i E_{s'})$
$$\mathcal{D}_s = \sum_{s'} \varepsilon_{ss'} E_{s'} = \sum_{s'} \left(\varepsilon_0 \delta_{ss'} + \frac{1}{V} \sum_{i,j,s'} q_j q_i W^{-1}_{i,s',j,s} \right) E_{s'}$$

Lattice dynamics simulation: GULP - General Utility Lattice Program

http://gulp.curtin.edu.au/gulp/

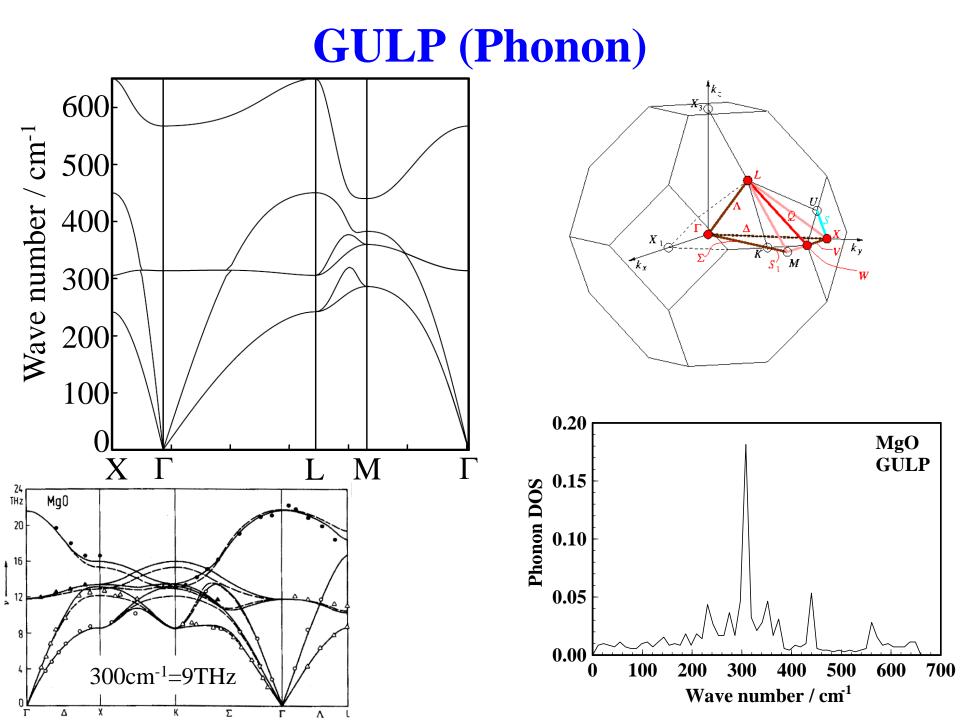


Curtin Home > Science and Engineering > GULP > GULP > Overview of GULP

Overview of GULP capabilities

- · System types
 - · clusters (0-D)
 - · defects (0-D)
 - polymers (1-D)
 - · line defects (1-D)
 - · surfaces (2-D)
 - slabs (2-D)
 - grain boundaries (2-D)
 - bulk materials (3-D)
- · Energy minimisation
 - · constant pressure / volume
 - · shell only relaxations (optical)
 - · breathing only relaxations

- · Crystal properties
 - · elastic constants
 - bulk moduli
 - · Young's modulus
 - · Poisson's ratios
 - · shear moduli
 - · static dielectric constants
 - · high frequency dielectric constants
 - · refractive indices
 - · piezoelectric constants
 - phonon frequencies
 - · non-analytic correction for gamma point modes
 - · phonon densities of states
 - · projected phonon densities of states
 - · phonon dispersion curves
 - · Patterson symmetry used in k space
 - · zero point vibrational energies
 - · entropy (constant volume)
 - · heat capacity (constant volume)
 - · Helmholtz free energy
 - electrostatic potential
 - electric field
 - · electric field gradients
 - · Born effective charges
 - · frequency dependent dielectric constant tensor
 - reflectivity
 - · mean kinetic energy of phonons



Polarization of polar molecules at finite *T*

Polar molecule like HF: H and F are charged with +q|e| and -q|e|, respectively, and form electrical dipole $p_0 = qd$ (*d* is the chemical bond vector).

When *E* is applied along the *z* direction and p_0 is declined from the z axis by θ degree as shown in Fig. 1: $U_p = -p_0 \cdot E = -p_0 E \cos\theta$ (5.28)Fig. 1 Dipole in electric field *E* Polarization density **P**: $P = \frac{N}{V} \frac{\int p_0 \cos\theta \cdot \exp(\beta p_0 E \cos\theta) \sin\theta d\theta d\varphi}{\int \exp(\beta p_0 E \cos\theta) \sin\theta d\theta d\varphi}$ Replace by $\beta p_0 E = \alpha$ and $\cos \theta = x$, and integrate w.r.t. φ : $P = \frac{N}{V} p_0 \frac{\int x \exp(\alpha x) dx}{\int \exp(\alpha x) dx}$ **Fig. 2 Polar coordinates** Partial integration gives $\int x \exp(\alpha x) dx = \frac{\exp(\alpha x)}{\alpha^2} (\alpha x - 1)$: $P = \frac{N}{V} p_0 L(\alpha)$ (5.49) $L(\alpha) = \coth(\alpha) - \frac{1}{\alpha}$ **Langevin function**

Polarization of polar molecules at finite *T*

Electrical susceptibility χ : $P = \chi E = \frac{N}{V} p_0 L(\beta p_0 E)$

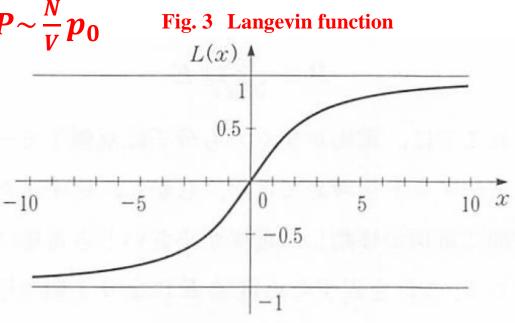
$$L(\alpha) = \coth(\alpha) - \frac{1}{\alpha} \qquad \text{Langevin function}$$
$$\coth(\alpha) = \frac{e^{\alpha} + e^{-\alpha}}{e^{\alpha} - e^{-\alpha}}$$
$$L(\alpha) \sim \frac{\alpha}{3} - \frac{\alpha^3}{45} + \cdots \quad (\alpha = \beta p_0 E \ll 1)$$
$$L(\alpha) \sim 1 \qquad (\alpha = \beta p_0 E \gg 1)$$

Low T / High E: asymptotic to $P \sim \frac{N}{v} p_0$ High T / Low E: $\chi \sim \frac{N/V}{3k_PT} p_0^2$

Dielectric constant *ɛ*:

=>

$$\varepsilon E = \varepsilon_0 E + P$$
$$\varepsilon = \varepsilon_0 + \frac{N/V}{3k_B T} p_0^2$$



Dielectric permittivity

Definition of electric flux density *D*

 $\mathbf{D}_{\mathbf{e}}(\mathbf{r},t) = \varepsilon_0 \mathbf{E}(\mathbf{r},t) + \mathbf{P}(\mathbf{r},t)$

Electric susceptibility $P_e(\mathbf{r},t) = \chi_e \mathbf{E}(\mathbf{r},t)$

 $\mathbf{D}_{\mathbf{e}}(\mathbf{r},t) = \left(\varepsilon_0 + \chi_e\right) \mathbf{E}(\mathbf{r},t) = \varepsilon \mathbf{E}(\mathbf{r},t)$

ε : Dielectric constant (permittivity)

 $\varepsilon_r = \frac{\varepsilon}{\varepsilon_0}$: Relative dielectric constant

 ε_r of representative crystals

CaO	11.8	MgO	9.8
SrO	13.3	KBr	4.78
KC1	4.68	KF	6.05
KI	4.94	LiI	11.03
LiCl	11.05	NaCl	5.62
TiO ₂ (rutile)			// <i>c</i> : 173, in <i>a-b</i> : 89
SnO ₂ (rutile)			// <i>c</i> : 9.9, in <i>a-b</i> : 14
$Pb(Zr_{0.52}Ti_{0.48})O_3(25^{\circ}C)$			up to 1600